Ruby/model/brain.py
2025-04-24 13:17:08 -04:00

37 lines
1.0 KiB
Python

import torch
import torch.nn as nn
import random
from model.tokenizer import Tokenizer
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = Tokenizer()
VOCAB_SIZE = 10000 # Temporary cap, grows dynamically
EMBED_DIM = 128
class TinyTransformer(nn.Module):
def __init__(self):
super().__init__()
self.embed = nn.Embedding(VOCAB_SIZE, EMBED_DIM)
self.ln1 = nn.LayerNorm(EMBED_DIM)
self.fc = nn.Linear(EMBED_DIM, VOCAB_SIZE)
def forward(self, x):
x = self.embed(x)
x = self.ln1(x)
return self.fc(x)
model = TinyTransformer().to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()
def generate_response():
seed = torch.tensor([random.randint(0, tokenizer.next_id - 1)], device=DEVICE)
output = model(seed.unsqueeze(0))
pred = torch.argmax(output, dim=-1).squeeze().tolist()
if not isinstance(pred, list):
pred = [pred]
return tokenizer.detokenize(pred)