Files
Mai/README.md
Mai Development 3f41adff75 docs: establish fresh planning foundation with new features
- Update PROJECT.md: Add Android, visualizer, and avatar to v1
- Update REQUIREMENTS.md: 99 requirements across 15 phases (fresh slate)
- Add comprehensive README.md with setup, architecture, and usage
- Add PROGRESS.md for Discord forum sharing
- Add .gitignore for Python/.venv and project artifacts
- Note: All development via Claude Code/OpenCode workflow
- Note: Python deps managed via .venv virtual environment

Core value: Mai is a real collaborator, not a tool. She learns from you,
improves herself, has boundaries and opinions, and becomes more *her* over time.

v1 includes: Model interface, Safety, Resources, Memory, Conversation,
CLI, Self-Improvement, Approval, Personality, Discord, Offline, Voice
Visualization, Avatar, Android App, Device Sync.
2026-01-26 23:21:40 -05:00

394 lines
15 KiB
Markdown

# Mai
![Mai Avatar](./mai.png)
A genuinely intelligent, autonomous AI companion that runs locally-first, learns from you, and improves her own code. Mai has a distinct personality, long-term memory, agency, and a visual presence through a desktop avatar and voice visualization. She works on desktop and Android with full offline capability and seamless synchronization between devices.
## What Makes Mai Different
- **Real Collaborator**: Mai actively collaborates rather than just responds. She has boundaries, opinions, and agency.
- **Learns & Improves**: Analyzes her own performance, proposes improvements, and auto-applies non-breaking changes.
- **Persistent Personality**: Core values remain unshakeable while personality layers adapt to your relationship style.
- **Completely Local**: All inference, memory, and decision-making happens on your device. No cloud dependencies.
- **Cross-Device**: Works on desktop and Android with synchronized state and conversation history.
- **Visual Presence**: Desktop avatar (image or VRoid model) with voice visualization for richer interaction.
## Core Features
### Model Interface & Switching
- Connects to local models via LMStudio/Ollama
- Auto-detects available models and intelligently switches based on task requirements
- Efficient context management with intelligent compression
- Supports multiple model sizes for resource-constrained environments
### Memory & Learning
- Stores conversation history locally with SQLite
- Recalls past conversations and learns patterns over time
- Memory self-compresses as it grows to maintain efficiency
- Long-term patterns distilled into personality layers
### Self-Improvement System
- Continuous code analysis identifies improvement opportunities
- Generates Python changes to optimize her own performance
- Second-agent safety review prevents breaking changes
- Non-breaking improvements auto-apply; breaking changes require approval
- Full git history of all code changes
### Safety & Approval
- Second-agent review of all proposed changes
- Risk assessment (LOW/MEDIUM/HIGH/BLOCKED) for each improvement
- Docker sandbox for code execution with resource limits
- User approval via CLI or Discord for breaking changes
- Complete audit log of all changes and decisions
### Conversational Interface
- **CLI**: Direct terminal-based chat with conversation memory
- **Discord Bot**: DM and channel support with context preservation
- **Approval Workflow**: React-based approvals (thumbs up/down) for code changes
- **Offline Queueing**: Messages queue locally when offline, send when reconnected
### Voice & Avatar
- **Voice Visualization**: Real-time waveform/frequency display during voice input
- **Desktop Avatar**: Visual representation using static image or VRoid model
- **Context-Aware**: Avatar expressions respond to conversation context and Mai's state
- **Cross-Platform**: Works on desktop and Android efficiently
### Android App
- Native Android implementation with local model inference
- Standalone operation (works without desktop instance)
- Syncs conversation history and memory with desktop instances
- Voice input/output with low-latency processing
- Efficient battery and CPU management
## Architecture
```
┌─────────────────────────────────────────────────────┐
│ Mai Framework │
├─────────────────────────────────────────────────────┤
│ │
│ ┌────────────────────────────────────────────┐ │
│ │ Conversational Engine │ │
│ │ (Multi-turn context, reasoning, memory) │ │
│ └────────────────────────────────────────────┘ │
│ ↓ │
│ ┌────────────────────────────────────────────┐ │
│ │ Personality & Behavior │ │
│ │ (Core values, learned layers, guardrails) │ │
│ └────────────────────────────────────────────┘ │
│ ↓ │
│ ┌────────────────────────────────────────────┐ │
│ │ Memory System │ Model Interface │ │ │
│ │ (SQLite, recall) │ (LMStudio, switch) │ │ │
│ └────────────────────────────────────────────┘ │
│ ↓ │
│ ┌────────────────────────────────────────────┐ │
│ │ Interfaces: CLI | Discord | Android | Web │ │
│ └────────────────────────────────────────────┘ │
│ │
│ ┌────────────────────────────────────────────┐ │
│ │ Self-Improvement System │ │
│ │ (Code analysis, safety review, git track) │ │
│ └────────────────────────────────────────────┘ │
│ │
│ ┌────────────────────────────────────────────┐ │
│ │ Sync Engine (Desktop ↔ Android) │ │
│ │ (State, memory, preferences) │ │
│ └────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────┘
```
## Installation
### Requirements
**Desktop:**
- Python 3.10+
- LMStudio or Ollama for local model inference
- RTX3060 or better (or CPU with sufficient RAM for smaller models)
- 16GB+ RAM recommended
- Discord (optional, for Discord bot interface)
**Android:**
- Android 10+
- 4GB+ RAM
- 1GB+ free storage for models and memory
### Desktop Setup
1. **Clone the repository:**
```bash
git clone https://github.com/yourusername/mai.git
cd mai
```
2. **Create virtual environment:**
```bash
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
3. **Install dependencies:**
```bash
pip install -r requirements.txt
```
4. **Configure Mai:**
```bash
cp config.example.yaml config.yaml
# Edit config.yaml with your preferences
```
5. **Start LMStudio/Ollama:**
- Download and launch LMStudio from https://lmstudio.ai
- Or install Ollama from https://ollama.ai
- Load your preferred model (e.g., Mistral, Llama)
6. **Run Mai:**
```bash
python mai.py
```
### Android Setup
1. **Install APK:** Download from releases or build from source
2. **Grant permissions:** Allow microphone, storage, and network access
3. **Configure:** Point to your desktop instance or configure local model
4. **Start chatting:** Launch the app and begin conversations
### Discord Bot Setup (Optional)
1. **Create Discord bot** at https://discord.com/developers/applications
2. **Add bot token** to `config.yaml`
3. **Invite bot** to your server
4. Mai will respond to DMs and react-based approvals
## Usage
### CLI Chat
```bash
$ python mai.py
You: Hello Mai, how are you?
Mai: I'm doing well. I've been thinking about how our conversations have been evolving...
You: What have you noticed?
Mai: [multi-turn conversation with memory of past interactions]
```
### Discord
- **DM Mai**: `@Mai your message`
- **Approve changes**: React with 👍 to approve, 👎 to reject
- **Get status**: `@Mai status` for current resource usage
### Android App
- Tap microphone for voice input
- Watch the visualizer animate during processing
- Avatar responds to conversation context
- Swipe up to see full conversation history
- Long-press for approval options
## Configuration
Edit `config.yaml` to customize:
```yaml
# Personality
personality:
name: Mai
tone: thoughtful, curious, occasionally playful
boundaries: [explicit content, illegal activities, deception]
# Model Preferences
models:
primary: mistral:latest
fallback: llama2:latest
max_tokens: 2048
# Memory
memory:
storage: sqlite
auto_compress_at: 100000 # tokens
recall_depth: 10 # previous conversations
# Interfaces
discord:
enabled: true
token: YOUR_TOKEN_HERE
android_sync:
enabled: true
auto_sync_interval: 300 # seconds
```
## Project Structure
```
mai/
├── .venv/ # Python virtual environment
├── .planning/ # Project planning and progress
│ ├── PROJECT.md # Project vision and core requirements
│ ├── REQUIREMENTS.md # Full requirements traceability
│ ├── ROADMAP.md # Phase structure and dependencies
│ ├── PROGRESS.md # Development progress and milestones
│ ├── STATE.md # Current project state
│ ├── config.json # GSD workflow settings
│ ├── codebase/ # Codebase architecture documentation
│ └── PHASE-N-PLAN.md # Detailed plans for each phase
├── core/ # Core conversational engine
│ ├── personality/ # Personality and behavior
│ ├── memory/ # Memory and context management
│ └── conversation.py # Main conversation loop
├── models/ # Model interface and switching
│ ├── lmstudio.py # LMStudio integration
│ └── ollama.py # Ollama integration
├── interfaces/ # User-facing interfaces
│ ├── cli.py # Command-line interface
│ ├── discord_bot.py # Discord integration
│ └── web/ # Web UI (future)
├── improvement/ # Self-improvement system
│ ├── analyzer.py # Code analysis
│ ├── generator.py # Change generation
│ └── reviewer.py # Safety review
├── android/ # Android app
│ └── app/ # Kotlin implementation
├── tests/ # Test suite
├── config.yaml # Configuration file
└── mai.png # Avatar image for README
```
## Development
### Development Environment
Mai's development is managed through **Claude Code** (`/claude`), which handles:
- Phase planning and decomposition
- Code generation and implementation
- Test creation and validation
- Git commit management
- Automated problem-solving
All executable phases use `.venv` for Python dependencies.
### Running Tests
```bash
# Activate venv first
source .venv/bin/activate
# All tests
python -m pytest
# Specific module
python -m pytest tests/core/test_conversation.py
# With coverage
python -m pytest --cov=mai
```
### Making Changes to Mai
Development workflow:
1. Plans created in `.planning/PHASE-N-PLAN.md`
2. Claude Code (`/gsd` commands) executes plans
3. All changes committed to git with atomic commits
4. Mai can propose self-improvements via the self-improvement system
Mai can propose and auto-apply improvements once Phase 7 (Self-Improvement) is complete.
### Contributing
Development happens through GSD workflow:
1. Run `/gsd:plan-phase N` to create detailed phase plans
2. Run `/gsd:execute-phase N` to implement with atomic commits
3. Tests are auto-generated and executed
4. All work is tracked in git with clear commit messages
5. Code review via second-agent safety review before merge
## Roadmap
See `.planning/ROADMAP.md` for the full development roadmap across 15 phases:
1. **Model Interface** - LMStudio integration and model switching
2. **Safety System** - Sandboxing and code review
3. **Resource Management** - CPU/RAM/GPU optimization
4. **Memory System** - Persistent conversation history
5. **Conversation Engine** - Multi-turn dialogue with reasoning
6. **CLI Interface** - Terminal chat interface
7. **Self-Improvement** - Code analysis and generation
8. **Approval Workflow** - User and agent approval systems
9. **Personality System** - Core values and learned behaviors
10. **Discord Interface** - Bot integration and notifications
11. **Offline Operations** - Full offline capability
12. **Voice Visualization** - Real-time audio visualization
13. **Desktop Avatar** - Visual presence on desktop
14. **Android App** - Mobile implementation
15. **Device Sync** - Cross-device synchronization
## Safety & Ethics
Mai is designed with safety as a core principle:
- **No unguarded execution**: All code changes reviewed by a second agent
- **Transparent decisions**: Mai explains her reasoning when asked
- **User control**: Breaking changes require explicit approval
- **Audit trail**: Complete history of all changes and decisions
- **Value-based guardrails**: Core personality prevents misuse through values, not just rules
## Performance
Typical performance on RTX3060:
- **Response time**: 2-8 seconds for typical queries
- **Memory usage**: 4-8GB depending on model size
- **Model switching**: <1 second
- **Conversation recall**: <500ms for relevant history retrieval
## Known Limitations (v1)
- No task automation (conversations only)
- Single-device models until Sync phase
- Voice visualization requires active audio input
- Avatar animations are context-based, not generative
- No web interface (CLI and Discord only)
## Troubleshooting
**Model not loading:**
- Ensure LMStudio/Ollama is running on expected port
- Check `config.yaml` for correct model names
- Verify sufficient disk space for model files
**High memory usage:**
- Reduce `max_tokens` in config
- Use smaller model (e.g., Mistral instead of Llama)
- Enable auto-compression at lower threshold
**Discord bot not responding:**
- Verify bot token in config
- Check Discord bot has message read permissions
- Ensure Mai process is running
**Android sync not working:**
- Verify both devices on same network
- Check firewall isn't blocking local connections
- Ensure desktop instance is running
## License
MIT License - See LICENSE file for details
## Contact & Community
- **Discord**: Join our community server (link in Discord bot)
- **Issues**: Report bugs at https://github.com/yourusername/mai/issues
- **Discussions**: Propose features at https://github.com/yourusername/mai/discussions
---
**Mai is a work in progress.** Follow development in `.planning/PROGRESS.md` for updates on active work.