Files
Mai/.planning/phases/04-memory-context-management/04-02-PLAN.md
Mai Development 9cdb1e7f6c docs(04): create phase plan
Phase 04: Memory & Context Management
- 4 plan(s) in 3 wave(s)
- 2 parallel, 2 sequential
- Ready for execution
2026-01-27 21:53:07 -05:00

161 lines
6.9 KiB
Markdown

---
phase: 04-memory-context-management
plan: 02
type: execute
wave: 2
depends_on: ["04-01"]
files_modified: ["src/memory/retrieval/__init__.py", "src/memory/retrieval/semantic_search.py", "src/memory/retrieval/context_aware.py", "src/memory/retrieval/timeline_search.py", "src/memory/__init__.py"]
autonomous: true
must_haves:
truths:
- "User can search conversations by semantic meaning"
- "Search results are ranked by relevance to query"
- "Context-aware search prioritizes current topic discussions"
- "Timeline search allows filtering by date ranges"
- "Hybrid search combines semantic and keyword matching"
artifacts:
- path: "src/memory/retrieval/semantic_search.py"
provides: "Semantic search with embedding-based similarity"
min_lines: 70
- path: "src/memory/retrieval/context_aware.py"
provides: "Topic-based search prioritization"
min_lines: 50
- path: "src/memory/retrieval/timeline_search.py"
provides: "Date-range filtering and temporal search"
min_lines: 40
- path: "src/memory/__init__.py"
provides: "Updated MemoryManager with search capabilities"
exports: ["MemoryManager", "SemanticSearch"]
key_links:
- from: "src/memory/retrieval/semantic_search.py"
to: "src/memory/storage/vector_store.py"
via: "vector similarity search operations"
pattern: "vector_store\\.search_similar"
- from: "src/memory/retrieval/context_aware.py"
to: "src/memory/storage/sqlite_manager.py"
via: "conversation metadata for topic analysis"
pattern: "sqlite_manager\\.get_conversation_metadata"
- from: "src/memory/__init__.py"
to: "src/memory/retrieval/"
via: "search method delegation"
pattern: "semantic_search\\.find"
---
<objective>
Implement the memory retrieval system with semantic search, context-aware prioritization, and timeline filtering. This enables intelligent recall of past conversations using multiple search strategies.
Purpose: Allow users and the system to find relevant conversations quickly using semantic meaning, context awareness, and temporal filters
Output: Working search system that can retrieve conversations by meaning, topic, and time range
</objective>
<execution_context>
@~/.opencode/get-shit-done/workflows/execute-plan.md
@~/.opencode/get-shit-done/templates/summary.md
</execution_context>
<context>
@.planning/phases/04-memory-context-management/04-CONTEXT.md
@.planning/phases/04-memory-context-management/04-RESEARCH.md
@.planning/PROJECT.md
@.planning/ROADMAP.md
@.planning/STATE.md
# Reference storage foundation
@.planning/phases/04-memory-context-management/04-01-SUMMARY.md
# Reference existing conversation handling
@src/models/conversation.py
@src/models/context_manager.py
</context>
<tasks>
<task type="auto">
<name>Task 1: Create semantic search with embedding-based retrieval</name>
<files>src/memory/retrieval/__init__.py, src/memory/retrieval/semantic_search.py</files>
<action>
Create src/memory/retrieval/semantic_search.py with SemanticSearch class:
1. Add sentence-transformers to requirements.txt (use all-MiniLM-L6-v2 for efficiency)
2. Implement SemanticSearch with:
- Embedding model loading (lazy loading for performance)
- Query embedding generation
- Vector similarity search using VectorStore from plan 04-01
- Hybrid search combining semantic and keyword matching
- Result ranking and relevance scoring
- Conversation snippet generation for context
Follow research pattern for hybrid search:
- Generate query embedding
- Search vector store for similar conversations
- Fallback to keyword search if no semantic results
- Combine and rank results with weighted scoring
Include methods to:
- search(query: str, limit: int = 5) -> List[SearchResult]
- search_by_embedding(embedding: np.ndarray, limit: int = 5) -> List[SearchResult]
- keyword_search(query: str, limit: int = 5) -> List[SearchResult]
Use existing error handling patterns and type hints from src/models/ modules.
</action>
<verify>python -c "from src.memory.retrieval.semantic_search import SemanticSearch; search = SemanticSearch(':memory:'); print('Semantic search created successfully')"</verify>
<done>Semantic search can generate embeddings and perform basic search operations</done>
</task>
<task type="auto">
<name>Task 2: Implement context-aware and timeline search capabilities</name>
<files>src/memory/retrieval/context_aware.py, src/memory/retrieval/timeline_search.py, src/memory/__init__.py</files>
<action>
Create context-aware and timeline search components:
1. Create src/memory/retrieval/context_aware.py with ContextAwareSearch:
- Topic extraction from current conversation context
- Conversation topic classification using simple heuristics
- Topic-based result prioritization
- Current conversation context tracking
- Methods: prioritize_by_topic(results: List[SearchResult], current_topic: str) -> List[SearchResult]
2. Create src/memory/retrieval/timeline_search.py with TimelineSearch:
- Date range filtering for conversations
- Temporal proximity search (find conversations near specific dates)
- Recency-based result weighting
- Conversation age calculation and compression level awareness
- Methods: search_by_date_range(start: datetime, end: datetime, limit: int = 5) -> List[SearchResult]
3. Update src/memory/__init__.py to integrate search capabilities:
- Import all search classes
- Add search methods to MemoryManager
- Provide unified search interface combining semantic, context-aware, and timeline search
- Add search result dataclasses with relevance scores and conversation snippets
Follow existing patterns from src/models/ for data structures and error handling. Ensure search results include conversation metadata for context.
</action>
<verify>python -c "from src.memory import MemoryManager; mm = MemoryManager(':memory:'); print('Memory manager with search created successfully')"</verify>
<done>Memory manager provides unified search interface with all search modes</done>
</task>
</tasks>
<verification>
After completion, verify:
1. Semantic search can find conversations by meaning
2. Context-aware search prioritizes relevant topics
3. Timeline search filters by date ranges correctly
4. Hybrid search combines semantic and keyword results
5. Search results include proper relevance scoring and conversation snippets
6. Integration with storage layer works correctly
</verification>
<success_criteria>
- Semantic search uses sentence-transformers for embedding generation
- Context-aware search prioritizes topics relevant to current discussion
- Timeline search enables date-range filtering and temporal search
- Hybrid search combines multiple search strategies with proper ranking
- Memory manager provides unified search interface
- Search results include conversation context and relevance scoring
</success_criteria>
<output>
After completion, create `.planning/phases/04-memory-context-management/04-02-SUMMARY.md`
</output>