Some checks failed
Discord Webhook / git (push) Has been cancelled
- Create comprehensive MCP.md documenting all available tools: * Hugging Face Hub (models, datasets, papers, spaces, docs) * Web search and fetch for research * Code tools (Bash, Git, file ops) * Claude Code (GSD) workflow agents - Map MCP usage to specific phases: * Phase 1: Model discovery (Mistral, Llama, quantized options) * Phase 2: Safety research (sandboxing, verification papers) * Phase 5: Conversation datasets and papers * Phase 12: Voice visualization models and spaces * Phase 13: Avatar generation tools and research * Phase 14: Mobile inference frameworks and patterns - Update config.json with MCP settings: * Enable Hugging Face (mystiatech authenticated) * Enable WebSearch for current practices * Set default result limits - Update PROJECT.md constraints to document MCP enablement Research phases will leverage MCPs extensively for optimal library/model selection, architecture patterns, and best practices.
6.5 KiB
6.5 KiB
Available Tools & MCP Integration
This document lists all available tools and MCP (Model Context Protocol) servers that Mai development can leverage.
Hugging Face Hub Integration
Status: Authenticated as mystiatech
Tools Available
Model Discovery
mcp__claude_ai_Hugging_Face__model_search— Search ML models by task, author, library, trendingmcp__claude_ai_Hugging_Face__hub_repo_details— Get detailed info on any model, dataset, or space
Use Cases:
- Phase 1: Discover quantized models for local inference (Mistral, Llama, etc.)
- Phase 12: Find audio/voice models for visualization
- Phase 13: Find avatar/animation models (VRoid compatible options)
- Phase 14: Research Android-compatible model formats
Dataset Discovery
mcp__claude_ai_Hugging_Face__dataset_search— Find datasets by task, author, tags, trending- Search filters: language, size, task categories
Use Cases:
- Phase 4: Training data research for memory compression
- Phase 5: Conversation quality datasets
- Phase 12: Audio visualization datasets
Research Papers
mcp__claude_ai_Hugging_Face__paper_search— Search ML research papers with abstracts
Use Cases:
- Phase 2: Safety and sandboxing research papers
- Phase 4: Memory system and RAG papers
- Phase 5: Conversational AI and reasoning papers
- Phase 7: Self-improvement and code generation papers
Spaces & Interactive Models
mcp__claude_ai_Hugging_Face__space_search— Discover Hugging Face Spaces (demos)mcp__claude_ai_Hugging_Face__dynamic_space— Run interactive tasks (Image Gen, OCR, TTS, etc.)
Use Cases:
- Phase 12: Voice/audio visualization demos
- Phase 13: Avatar generation or manipulation
- Phase 14: Android UI pattern research
Documentation
mcp__claude_ai_Hugging_Face__hf_doc_search— Search HF docs and guidesmcp__claude_ai_Hugging_Face__hf_doc_fetch— Fetch full documentation pages
Use Cases:
- Phase 1: LMStudio/Ollama integration documentation
- Phase 5: Transformers library best practices
- Phase 14: Mobile inference frameworks (ONNX Runtime, TensorFlow Lite)
Account Info
mcp__claude_ai_Hugging_Face__hf_whoami— Get authenticated user info
Web Research
Tools Available
WebSearch— Search the web for current information (2026 context)WebFetch— Fetch and analyze specific URLs
Use Cases:
- Research current best practices in AI safety (Phase 2)
- Find Android development patterns (Phase 14)
- Discover voice visualization libraries (Phase 12)
- Research avatar systems (Phase 13)
- Find Discord bot best practices (Phase 10)
Code & Repository Tools
Tools Available
Bash— Execute terminal commands (git, npm, python, etc.)Glob— Fast file pattern matchingGrep— Ripgrep-based content searchRead— Read file contentsEdit— Edit files with string replacementWrite— Create new files
Use Cases:
- All phases: Create and manage project structure
- All phases: Execute tests and build commands
- All phases: Manage git commits and history
Claude Code (GSD) Workflow
Orchestrators Available
/gsd:new-project— Initialize project/gsd:plan-phase N— Create detailed phase plans/gsd:execute-phase N— Execute phase with atomic commits/gsd:discuss-phase N— Gather phase context/gsd:verify-work— User acceptance testing
Specialized Agents
gsd-project-researcher— Domain research (stack, features, architecture, pitfalls)gsd-phase-researcher— Phase-specific researchgsd-codebase-mapper— Analyze and document existing codegsd-planner— Create executable phase plansgsd-executor— Execute plans with state managementgsd-verifier— Verify deliverables match requirementsgsd-debugger— Systematic debugging with checkpoints
How to Use MCPs in Development
In Phase Planning
When creating /gsd:plan-phase N:
- Researchers can use Hugging Face tools to discover libraries and models
- Use WebSearch for current best practices
- Query papers for architectural patterns
In Phase Execution
When running /gsd:execute-phase N:
- Download models from Hugging Face
- Use WebFetch for documentation
- Run Spaces for prototyping UI patterns
Example Usage by Phase
Phase 1: Model Interface
- mcp__claude_ai_Hugging_Face__model_search
Query: "quantized models for local inference"
→ Find Mistral, Llama, TinyLlama options
- mcp__claude_ai_Hugging_Face__hf_doc_fetch
→ Get Hugging Face Transformers documentation
- WebSearch
→ Latest LMStudio/Ollama integration patterns
Phase 2: Safety System
- mcp__claude_ai_Hugging_Face__paper_search
Query: "code sandboxing, safety verification"
→ Find relevant research papers
- WebSearch
→ Docker security best practices
Phase 5: Conversation Engine
- mcp__claude_ai_Hugging_Face__dataset_search
Query: "conversation quality, multi-turn dialogue"
- mcp__claude_ai_Hugging_Face__paper_search
Query: "conversational AI, context management"
Phase 12: Voice Visualization
- mcp__claude_ai_Hugging_Face__space_search
Query: "audio visualization, waveform display"
→ Find working demos
- mcp__claude_ai_Hugging_Face__model_search
Query: "speech recognition, audio models"
Phase 13: Desktop Avatar
- mcp__claude_ai_Hugging_Face__space_search
Query: "avatar generation, VRoid, character animation"
- WebSearch
→ VRoid SDK documentation
→ Avatar animation libraries
Phase 14: Android App
- mcp__claude_ai_Hugging_Face__model_search
Query: "mobile inference, quantized models, ONNX"
- WebSearch
→ Kotlin ML Kit documentation
→ TensorFlow Lite best practices
Configuration
Add to .planning/config.json to enable MCP usage:
{
"mcp": {
"huggingface": {
"enabled": true,
"authenticated_user": "mystiatech",
"default_result_limit": 10
},
"web_search": {
"enabled": true,
"domain_restrictions": []
},
"code_tools": {
"enabled": true
}
}
}
Research Output Format
When researchers use MCPs, they produce:
.planning/research/STACK.md— Technologies and libraries.planning/research/FEATURES.md— Capabilities and patterns.planning/research/ARCHITECTURE.md— System design patterns.planning/research/PITFALLS.md— Common mistakes and solutions
These inform phase planning and implementation.
Updated: 2026-01-26 Next Review: When new MCP servers become available