Feat!: Added train_gpt_model.py

This breaks any past code as it splits the code into two files.
doc: added phoebe_model.pt (trained model for phoebe)
This commit is contained in:
Dan
2024-05-15 15:07:02 -04:00
parent 54c4cf59b0
commit 12071fbf61
3 changed files with 99 additions and 84 deletions

View File

@ -1,63 +1,15 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import mmap
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
batch_size = 64
block_size = 256
max_iters = 200
learning_rate = 2e-5
eval_iters = 100
num_embed = 384 # Ensure consistency in naming
num_heads = 8
num_layers = 8
dropout = 0.2
chars = ""
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
def encode(s):
return [string_to_int[c] for c in s]
def decode(lst):
return "".join([int_to_string[i] for i in lst])
def get_random_chunk(split):
filename = "train_split.txt" if split == "train" else "eval_split.txt"
with open(filename, "rb") as f:
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm:
file_size = len(mm)
start = random.randint(0, file_size - block_size * batch_size)
mm.seek(start)
block = mm.read(block_size * batch_size - 1)
decoded_block = block.decode("utf-8", errors="ignore").replace(
"\r", ""
)
data = torch.tensor(encode(decoded_block), dtype=torch.long)
return data
def get_batch(split):
data = get_random_chunk(split)
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
class Head(nn.Module):
def __init__(self, head_size):
@ -128,7 +80,7 @@ class Block(nn.Module):
class GPT(nn.Module):
def __init__(self):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, num_embed)
self.position_embedding_table = nn.Embedding(block_size, num_embed)
@ -170,7 +122,7 @@ class GPT(nn.Module):
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits, _ = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
@ -178,39 +130,9 @@ class GPT(nn.Module):
return idx
model = GPT().to(device)
def encode(s, string_to_int):
return [string_to_int[c] for c in s]
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean().item()
model.train()
return out
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}"
)
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")
def decode(lst, int_to_string):
return "".join([int_to_string[i] for i in lst])

View File

@ -0,0 +1,93 @@
import torch
import mmap
import random
from gpt_model import GPT, encode
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
batch_size = 64
block_size = 256
max_iters = 200
learning_rate = 2e-5
eval_iters = 100
dropout = 0.2
chars = ""
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
# Ensure that space and other special characters are included
required_chars = " \n\r\t"
for char in required_chars:
if char not in chars:
chars.append(char)
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
def get_random_chunk(split):
filename = "train_split.txt" if split == "train" else "eval_split.txt"
with open(filename, "rb") as f:
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm:
file_size = len(mm)
start = random.randint(0, file_size - block_size * batch_size)
mm.seek(start)
block = mm.read(block_size * batch_size - 1)
decoded_block = block.decode("utf-8", errors="ignore").replace(
"\r", ""
)
data = torch.tensor(
encode(decoded_block, string_to_int), dtype=torch.long
)
return data
def get_batch(split):
data = get_random_chunk(split)
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
model = GPT(vocab_size).to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean().item()
model.train()
return out
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}"
)
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")

BIN
phoebe_model.pt Normal file

Binary file not shown.