Fix: Working on improving the model code to get a better learning rate than 2.5

This commit is contained in:
Dan
2024-05-17 23:33:02 -04:00
parent 763514e815
commit 47c8cce3dd
3 changed files with 76 additions and 40 deletions

View File

@ -1,13 +1,14 @@
import os
import discord import discord
from train_gpt_model import process_message
from gpt_model import load_model
import torch import torch
from dotenv import load_dotenv from dotenv import load_dotenv
import os from train_gpt_model import process_message
from gpt_model import load_model
# Load environment variables from .env file
load_dotenv() load_dotenv()
# Discord bot token # Get the Discord bot token from environment variables
TOKEN = os.getenv("DISCORD_TOKEN") TOKEN = os.getenv("DISCORD_TOKEN")
# Load the vocabulary # Load the vocabulary

View File

@ -1,7 +1,6 @@
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import os
# Hyperparameters # Hyperparameters
batch_size = 64 batch_size = 64
@ -120,14 +119,11 @@ class GPT(nn.Module):
loss = F.cross_entropy(logits, targets) loss = F.cross_entropy(logits, targets)
return logits, loss return logits, loss
def generate(self, idx, max_new_tokens): def generate(self, idx, max_new_tokens, temperature=1.0):
for _ in range(max_new_tokens): for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:] idx_cond = idx[:, -block_size:]
logits, _ = self(idx_cond) logits, _ = self(idx_cond)
print(f"Logits shape: {logits.shape}") # Debug print logits = logits[:, -1, :] / temperature
if logits.size(1) == 0:
raise ValueError("Logits tensor is empty.")
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1) probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1) idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1) idx = torch.cat((idx, idx_next), dim=1)
@ -136,27 +132,19 @@ class GPT(nn.Module):
def encode(s, string_to_int): def encode(s, string_to_int):
# Replace unknown characters with a special token (e.g., "<unk>") # Replace unknown characters with a special token (e.g., "<unk>")
encoded = [] return [string_to_int.get(c, string_to_int["<unk>"]) for c in s]
for c in s:
if c in string_to_int:
encoded.append(string_to_int[c])
else:
print(f"Unknown character encountered during encoding: {c}")
encoded.append(string_to_int["<unk>"])
return encoded
def decode(lst, int_to_string): def decode(lst, int_to_string):
return "".join([int_to_string[i] for i in lst]) return "".join([int_to_string[i] for i in lst])
def load_model(vocab_size, model_path="phoebe_model.pt"): def load_model(vocab_size, model_path=None):
model = GPT(vocab_size) model = GPT(vocab_size)
if os.path.exists(model_path): if model_path:
model.load_state_dict( try:
torch.load(model_path, map_location=torch.device("cpu")) model.load_state_dict(torch.load(model_path))
) print("Model loaded successfully.")
print("Model loaded successfully.") except FileNotFoundError:
else: print("No pre-trained model found. Initialized a new model.")
print("No pre-trained model found. Initialized a new model.")
return model return model

View File

@ -1,5 +1,8 @@
import re
import torch import torch
import torch.optim as optim
import random import random
import os
from gpt_model import encode, decode, load_model from gpt_model import encode, decode, load_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@ -7,10 +10,11 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters # Hyperparameters
batch_size = 64 batch_size = 64
block_size = 256 block_size = 256
max_iters = 3000 max_iters = 5000
learning_rate = 2e-4 learning_rate = 1e-5 # Adjusted learning rate
eval_iters = 250 eval_iters = 100
dropout = 0.2 dropout = 0.2
patience = 500 # Number of iterations to wait for improvement before stopping
# Load the vocabulary and encoded data # Load the vocabulary and encoded data
with open("vocab.txt", "r", encoding="utf-8") as f: with open("vocab.txt", "r", encoding="utf-8") as f:
@ -32,12 +36,25 @@ vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)} string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)} int_to_string = {i: ch for i, ch in enumerate(chars)}
# Load and preprocess training and validation data from .txt files
with open("train_split.txt", "r", encoding="utf-8") as f:
train_data = f.read()
with open("eval_split.txt", "r", encoding="utf-8") as f: def clean_text(text):
val_data = f.read() """Remove special characters and unwanted symbols from the text."""
text = re.sub(r"[^a-zA-Z0-9\s.,;!?\'\"]+", "", text)
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
# Load and preprocess training and validation data from cleaned .txt files
def load_and_clean_data(file_path):
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
cleaned_text = clean_text(text)
return cleaned_text
train_data = load_and_clean_data("train_split_cleaned.txt")
val_data = load_and_clean_data("eval_split_cleaned.txt")
train_data = torch.tensor(encode(train_data, string_to_int), dtype=torch.long) train_data = torch.tensor(encode(train_data, string_to_int), dtype=torch.long)
val_data = torch.tensor(encode(val_data, string_to_int), dtype=torch.long) val_data = torch.tensor(encode(val_data, string_to_int), dtype=torch.long)
@ -58,7 +75,17 @@ def get_batch(data, block_size, batch_size):
return x, y return x, y
model = load_model(vocab_size).to(device) def load_or_initialize_model(vocab_size):
model = load_model(vocab_size)
if os.path.exists("phoebe_model.pt"):
model.load_state_dict(torch.load("phoebe_model.pt"))
print("Model loaded from phoebe_model.pt")
else:
print("Initialized a new model")
return model
model = load_or_initialize_model(vocab_size).to(device)
@torch.no_grad() @torch.no_grad()
@ -78,7 +105,11 @@ def estimate_loss():
def train_model(): def train_model():
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) optimizer = optim.AdamW(model.parameters(), lr=learning_rate)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1000, gamma=0.1)
best_val_loss = float("inf")
patience_counter = 0
for iter in range(max_iters): for iter in range(max_iters):
if iter % eval_iters == 0: if iter % eval_iters == 0:
losses = estimate_loss() losses = estimate_loss()
@ -86,15 +117,31 @@ def train_model():
f"step {iter}: train loss {losses['train']:.3f}, " f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}" f"val loss {losses['val']:.3f}"
) )
# Check for improvement in validation loss
if losses["val"] < best_val_loss:
best_val_loss = losses["val"]
patience_counter = 0
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")
else:
patience_counter += eval_iters
# Early stopping
if patience_counter >= patience:
print("Early stopping triggered.")
break
xb, yb = get_batch(train_data, block_size, batch_size) xb, yb = get_batch(train_data, block_size, batch_size)
logits, loss = model(xb, yb) logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True) optimizer.zero_grad(set_to_none=True)
loss.backward() loss.backward()
optimizer.step() optimizer.step()
scheduler.step()
print(loss.item()) if patience_counter < patience:
torch.save(model.state_dict(), "phoebe_model.pt") print("Training completed without early stopping.")
print("Model Saved!") print(f"Final loss: {loss.item()}")
def check_input_chars(s, string_to_int): def check_input_chars(s, string_to_int):
@ -124,7 +171,7 @@ def process_message(message):
print("Message could not be processed.") # Debug print print("Message could not be processed.") # Debug print
return "Message could not be processed." return "Message could not be processed."
response = model.generate(encoded_text, max_new_tokens=50) response = model.generate(encoded_text, max_new_tokens=50, temperature=0.7)
decoded_response = decode(response[0].tolist(), int_to_string) decoded_response = decode(response[0].tolist(), int_to_string)
print(f"Generated response: '{decoded_response}'") # Debug print print(f"Generated response: '{decoded_response}'") # Debug print
return decoded_response return decoded_response