feat: Added GPT Model Code

Fix: Changed .pre-commit-confit.yaml to stop conflicts
docs: README.md changed due to the pre-commits
This commit is contained in:
Dan
2024-05-14 21:15:36 -04:00
parent 9db0796905
commit adca64bfc8
3 changed files with 228 additions and 4 deletions

View File

@ -1,11 +1,19 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.4.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- repo: https://github.com/psf/black
rev: 24.4.2
rev: 22.3.0
hooks:
- id: black
language_version: python3.10.6
args: [--line-length=79]
- repo: https://github.com/pycqa/flake8
rev: 7.0.0 # Use the latest revision
rev: 4.0.1
hooks:
- id: flake8
args: [--max-line-length=79, --ignore=E203]

View File

@ -2,4 +2,4 @@
![Phoebe](/Phoebe.png)
# About Me
Hi there! My name is Phoebe! I am a 20 year old college student who is currently working on my degree in Machine Learning. I am a bit of a shy gal, and like to obverse everyone from the distance. My best friend is Daniel (@advtech as he goes by on Discord). I am looking forward to getting to know you!
Hi there! My name is Phoebe! I am a 20 year old college student who is currently working on my degree in Machine Learning. I am a bit of a shy gal, and like to obverse everyone from the distance. My best friend is Daniel (@advtech as he goes by on Discord). I am looking forward to getting to know you!

216
phoebe/neural/gpt_model.py Normal file
View File

@ -0,0 +1,216 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import mmap
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
batch_size = 64
block_size = 256
max_iters = 200
learning_rate = 2e-5
eval_iters = 100
num_embed = 384 # Ensure consistency in naming
num_heads = 8
num_layers = 8
dropout = 0.2
chars = ""
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
def encode(s):
return [string_to_int[c] for c in s]
def decode(lst):
return "".join([int_to_string[i] for i in lst])
def get_random_chunk(split):
filename = "train_split.txt" if split == "train" else "eval_split.txt"
with open(filename, "rb") as f:
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm:
file_size = len(mm)
start = random.randint(0, file_size - block_size * batch_size)
mm.seek(start)
block = mm.read(block_size * batch_size - 1)
decoded_block = block.decode("utf-8", errors="ignore").replace(
"\r", ""
)
data = torch.tensor(encode(decoded_block), dtype=torch.long)
return data
def get_batch(split):
data = get_random_chunk(split)
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(num_embed, head_size)
self.query = nn.Linear(num_embed, head_size)
self.value = nn.Linear(num_embed, head_size)
self.register_buffer(
"tril", torch.tril(torch.ones(block_size, block_size))
)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(num_embed, num_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self, num_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(num_embed, 4 * num_embed),
nn.ReLU(),
nn.Linear(4 * num_embed, num_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, num_embed, num_head):
super().__init__()
head_size = num_embed // num_head
self.sa = MultiHeadAttention(num_head, head_size)
self.ff = FeedForward(num_embed)
self.ln1 = nn.LayerNorm(num_embed)
self.ln2 = nn.LayerNorm(num_embed)
def forward(self, x):
y = self.sa(x)
x = self.ln1(x + y)
y = self.ff(x)
x = self.ln2(x + y)
return x
class GPT(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, num_embed)
self.position_embedding_table = nn.Embedding(block_size, num_embed)
self.blocks = nn.Sequential(
*[Block(num_embed, num_heads) for _ in range(num_layers)]
)
self.ln = nn.LayerNorm(num_embed)
self.lm_head = nn.Linear(num_embed, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(
torch.arange(T, device=idx.device)
)
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
model = GPT().to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean().item()
model.train()
return out
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}"
)
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")