Fix: Working on the generate reply for discord.
Feat: Added a launch.json to allow quicker launches of the bot docs: phoebe_model.pt will change every time we train.
This commit is contained in:
15
.vscode/launch.json
vendored
Normal file
15
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Phoebe",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "E:\\Development\\AI Development\\Phoebe\\phoebe\\discord_bot.py",
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
@ -1,13 +1,39 @@
|
||||
import discord
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from train_gpt_model import process_message
|
||||
from gpt_model import load_model
|
||||
import torch
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Discord bot token
|
||||
TOKEN = os.getenv("DISCORD_TOKEN")
|
||||
|
||||
# Load the vocabulary
|
||||
with open("vocab.txt", "r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
chars = sorted(list(set(text)))
|
||||
|
||||
# Ensure that space and other special characters are included
|
||||
required_chars = " \n\r\t"
|
||||
for char in required_chars:
|
||||
if char not in chars:
|
||||
chars.append(char)
|
||||
|
||||
# Add a special token for unknown characters
|
||||
special_token = "<unk>"
|
||||
if special_token not in chars:
|
||||
chars.append(special_token)
|
||||
|
||||
vocab_size = len(chars)
|
||||
string_to_int = {ch: i for i, ch in enumerate(chars)}
|
||||
int_to_string = {i: ch for i, ch in enumerate(chars)}
|
||||
|
||||
# Initialize and load the model
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = load_model(vocab_size, "phoebe_model.pt").to(device)
|
||||
|
||||
# Initialize Discord client
|
||||
intents = discord.Intents.default()
|
||||
intents.message_content = True
|
||||
@ -17,7 +43,6 @@ client = discord.Client(intents=intents)
|
||||
@client.event
|
||||
async def on_ready():
|
||||
print(f"We have logged in as {client.user}")
|
||||
load_model(5641, "phoebe_model.pt")
|
||||
|
||||
|
||||
@client.event
|
||||
@ -25,6 +50,9 @@ async def on_message(message):
|
||||
if message.author == client.user:
|
||||
return
|
||||
|
||||
# Debug: print the message content
|
||||
print(f"Received message: '{message.content}'")
|
||||
|
||||
# Process the message and get a response
|
||||
response = process_message(message.content)
|
||||
|
||||
|
@ -1,24 +1,22 @@
|
||||
import torch
|
||||
import mmap
|
||||
import random
|
||||
from gpt_model import GPT, encode, decode
|
||||
from gpt_model import encode, decode, load_model
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
batch_size = 64
|
||||
block_size = 256
|
||||
max_iters = 500
|
||||
learning_rate = 2e-5
|
||||
max_iters = 3000
|
||||
learning_rate = 2e-4
|
||||
eval_iters = 250
|
||||
dropout = 0.2
|
||||
|
||||
chars = ""
|
||||
# Load the vocabulary and encoded data
|
||||
with open("vocab.txt", "r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
chars = sorted(list(set(text)))
|
||||
|
||||
# Ensure that space and other special characters are included
|
||||
# Ensure that space and other special characters are included
|
||||
required_chars = " \n\r\t"
|
||||
for char in required_chars:
|
||||
@ -34,34 +32,33 @@ vocab_size = len(chars)
|
||||
string_to_int = {ch: i for i, ch in enumerate(chars)}
|
||||
int_to_string = {i: ch for i, ch in enumerate(chars)}
|
||||
|
||||
# Load and preprocess training and validation data from .txt files
|
||||
with open("train_split.txt", "r", encoding="utf-8") as f:
|
||||
train_data = f.read()
|
||||
|
||||
def get_random_chunk(split):
|
||||
filename = "train_split.txt" if split == "train" else "eval_split.txt"
|
||||
with open(filename, "rb") as f:
|
||||
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm:
|
||||
file_size = len(mm)
|
||||
start = random.randint(0, file_size - block_size * batch_size)
|
||||
mm.seek(start)
|
||||
block = mm.read(block_size * batch_size - 1)
|
||||
decoded_block = block.decode("utf-8", errors="ignore").replace(
|
||||
"\r", ""
|
||||
)
|
||||
data = torch.tensor(
|
||||
encode(decoded_block, string_to_int), dtype=torch.long
|
||||
)
|
||||
return data
|
||||
with open("eval_split.txt", "r", encoding="utf-8") as f:
|
||||
val_data = f.read()
|
||||
|
||||
train_data = torch.tensor(encode(train_data, string_to_int), dtype=torch.long)
|
||||
val_data = torch.tensor(encode(val_data, string_to_int), dtype=torch.long)
|
||||
|
||||
|
||||
def get_batch(split):
|
||||
data = get_random_chunk(split)
|
||||
ix = torch.randint(len(data) - block_size, (batch_size,))
|
||||
x = torch.stack([data[i : i + block_size] for i in ix])
|
||||
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
|
||||
def get_random_chunk(data, chunk_size):
|
||||
start = random.randint(0, len(data) - chunk_size - 1)
|
||||
chunk = data[start : start + chunk_size]
|
||||
return chunk
|
||||
|
||||
|
||||
def get_batch(data, block_size, batch_size):
|
||||
chunk_size = block_size * (batch_size + 1)
|
||||
chunk = get_random_chunk(data, chunk_size)
|
||||
x = chunk[: block_size * batch_size].view(batch_size, block_size)
|
||||
y = chunk[1 : block_size * batch_size + 1].view(batch_size, block_size)
|
||||
x, y = x.to(device), y.to(device)
|
||||
return x, y
|
||||
|
||||
|
||||
model = GPT(vocab_size).to(device)
|
||||
model = load_model(vocab_size).to(device)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@ -69,9 +66,10 @@ def estimate_loss():
|
||||
out = {}
|
||||
model.eval()
|
||||
for split in ["train", "val"]:
|
||||
data = train_data if split == "train" else val_data
|
||||
losses = torch.zeros(eval_iters)
|
||||
for k in range(eval_iters):
|
||||
X, Y = get_batch(split)
|
||||
X, Y = get_batch(data, block_size, batch_size)
|
||||
logits, loss = model(X, Y)
|
||||
losses[k] = loss.item()
|
||||
out[split] = losses.mean().item()
|
||||
@ -88,7 +86,7 @@ def train_model():
|
||||
f"step {iter}: train loss {losses['train']:.3f}, "
|
||||
f"val loss {losses['val']:.3f}"
|
||||
)
|
||||
xb, yb = get_batch("train")
|
||||
xb, yb = get_batch(train_data, block_size, batch_size)
|
||||
logits, loss = model(xb, yb)
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
@ -107,12 +105,15 @@ def check_input_chars(s, string_to_int):
|
||||
|
||||
|
||||
def process_message(message):
|
||||
print(f"Processing message: '{message}'") # Debug print
|
||||
if not message.strip():
|
||||
print("Message is empty or invalid.") # Debug print
|
||||
return "Message is empty or invalid."
|
||||
|
||||
# Check for unknown characters
|
||||
unknown_chars = check_input_chars(message, string_to_int)
|
||||
if unknown_chars:
|
||||
print(f"Message contains unknown characters: {unknown_chars}")
|
||||
return f"Message contains unknown characters: {unknown_chars}"
|
||||
|
||||
encoded_text = torch.tensor(
|
||||
@ -120,11 +121,14 @@ def process_message(message):
|
||||
).to(device)
|
||||
print(f"Encoded text shape: {encoded_text.shape}") # Debug print
|
||||
if encoded_text.size(1) == 0:
|
||||
print("Message could not be processed.") # Debug print
|
||||
return "Message could not be processed."
|
||||
|
||||
response = model.generate(encoded_text, max_new_tokens=50)
|
||||
decoded_response = decode(response[0].tolist(), int_to_string)
|
||||
print(f"Generated response: '{decoded_response}'") # Debug print
|
||||
return decoded_response
|
||||
|
||||
|
||||
# train_model()
|
||||
if __name__ == "__main__":
|
||||
train_model()
|
||||
|
Reference in New Issue
Block a user