Fix: Moved the Files around due to imports not working right
Feat: Phoebe replies but it's gibbish This is a version break because of the file structure change.
This commit is contained in:
35
phoebe/discord_bot.py
Normal file
35
phoebe/discord_bot.py
Normal file
@ -0,0 +1,35 @@
|
||||
import discord
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from train_gpt_model import process_message
|
||||
from gpt_model import load_model
|
||||
|
||||
load_dotenv()
|
||||
# Discord bot token
|
||||
TOKEN = os.getenv("DISCORD_TOKEN")
|
||||
|
||||
# Initialize Discord client
|
||||
intents = discord.Intents.default()
|
||||
intents.message_content = True
|
||||
client = discord.Client(intents=intents)
|
||||
|
||||
|
||||
@client.event
|
||||
async def on_ready():
|
||||
print(f"We have logged in as {client.user}")
|
||||
load_model(5641, "phoebe_model.pt")
|
||||
|
||||
|
||||
@client.event
|
||||
async def on_message(message):
|
||||
if message.author == client.user:
|
||||
return
|
||||
|
||||
# Process the message and get a response
|
||||
response = process_message(message.content)
|
||||
|
||||
# Send the response back to the Discord channel
|
||||
await message.channel.send(response)
|
||||
|
||||
|
||||
client.run(TOKEN)
|
@ -1,6 +1,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import os
|
||||
|
||||
# Hyperparameters
|
||||
batch_size = 64
|
||||
@ -123,6 +124,9 @@ class GPT(nn.Module):
|
||||
for _ in range(max_new_tokens):
|
||||
idx_cond = idx[:, -block_size:]
|
||||
logits, _ = self(idx_cond)
|
||||
print(f"Logits shape: {logits.shape}") # Debug print
|
||||
if logits.size(1) == 0:
|
||||
raise ValueError("Logits tensor is empty.")
|
||||
logits = logits[:, -1, :]
|
||||
probs = F.softmax(logits, dim=-1)
|
||||
idx_next = torch.multinomial(probs, num_samples=1)
|
||||
@ -131,8 +135,28 @@ class GPT(nn.Module):
|
||||
|
||||
|
||||
def encode(s, string_to_int):
|
||||
return [string_to_int[c] for c in s]
|
||||
# Replace unknown characters with a special token (e.g., "<unk>")
|
||||
encoded = []
|
||||
for c in s:
|
||||
if c in string_to_int:
|
||||
encoded.append(string_to_int[c])
|
||||
else:
|
||||
print(f"Unknown character encountered during encoding: {c}")
|
||||
encoded.append(string_to_int["<unk>"])
|
||||
return encoded
|
||||
|
||||
|
||||
def decode(lst, int_to_string):
|
||||
return "".join([int_to_string[i] for i in lst])
|
||||
|
||||
|
||||
def load_model(vocab_size, model_path="phoebe_model.pt"):
|
||||
model = GPT(vocab_size)
|
||||
if os.path.exists(model_path):
|
||||
model.load_state_dict(
|
||||
torch.load(model_path, map_location=torch.device("cpu"))
|
||||
)
|
||||
print("Model loaded successfully.")
|
||||
else:
|
||||
print("No pre-trained model found. Initialized a new model.")
|
||||
return model
|
@ -1,16 +1,16 @@
|
||||
import torch
|
||||
import mmap
|
||||
import random
|
||||
from gpt_model import GPT, encode
|
||||
from gpt_model import GPT, encode, decode
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Hyperparameters
|
||||
batch_size = 64
|
||||
block_size = 256
|
||||
max_iters = 200
|
||||
max_iters = 500
|
||||
learning_rate = 2e-5
|
||||
eval_iters = 100
|
||||
eval_iters = 250
|
||||
dropout = 0.2
|
||||
|
||||
chars = ""
|
||||
@ -18,12 +18,18 @@ with open("vocab.txt", "r", encoding="utf-8") as f:
|
||||
text = f.read()
|
||||
chars = sorted(list(set(text)))
|
||||
|
||||
# Ensure that space and other special characters are included
|
||||
# Ensure that space and other special characters are included
|
||||
required_chars = " \n\r\t"
|
||||
for char in required_chars:
|
||||
if char not in chars:
|
||||
chars.append(char)
|
||||
|
||||
# Add a special token for unknown characters
|
||||
special_token = "<unk>"
|
||||
if special_token not in chars:
|
||||
chars.append(special_token)
|
||||
|
||||
vocab_size = len(chars)
|
||||
string_to_int = {ch: i for i, ch in enumerate(chars)}
|
||||
int_to_string = {i: ch for i, ch in enumerate(chars)}
|
||||
@ -73,21 +79,52 @@ def estimate_loss():
|
||||
return out
|
||||
|
||||
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
||||
for iter in range(max_iters):
|
||||
if iter % eval_iters == 0:
|
||||
losses = estimate_loss()
|
||||
print(
|
||||
f"step {iter}: train loss {losses['train']:.3f}, "
|
||||
f"val loss {losses['val']:.3f}"
|
||||
)
|
||||
xb, yb = get_batch("train")
|
||||
logits, loss = model(xb, yb)
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
def train_model():
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
||||
for iter in range(max_iters):
|
||||
if iter % eval_iters == 0:
|
||||
losses = estimate_loss()
|
||||
print(
|
||||
f"step {iter}: train loss {losses['train']:.3f}, "
|
||||
f"val loss {losses['val']:.3f}"
|
||||
)
|
||||
xb, yb = get_batch("train")
|
||||
logits, loss = model(xb, yb)
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(loss.item())
|
||||
print(loss.item())
|
||||
torch.save(model.state_dict(), "phoebe_model.pt")
|
||||
print("Model Saved!")
|
||||
|
||||
torch.save(model.state_dict(), "phoebe_model.pt")
|
||||
print("Model Saved!")
|
||||
|
||||
def check_input_chars(s, string_to_int):
|
||||
unknown_chars = [c for c in s if c not in string_to_int]
|
||||
if unknown_chars:
|
||||
print(f"Unknown characters in input: {unknown_chars}")
|
||||
return unknown_chars
|
||||
|
||||
|
||||
def process_message(message):
|
||||
if not message.strip():
|
||||
return "Message is empty or invalid."
|
||||
|
||||
# Check for unknown characters
|
||||
unknown_chars = check_input_chars(message, string_to_int)
|
||||
if unknown_chars:
|
||||
return f"Message contains unknown characters: {unknown_chars}"
|
||||
|
||||
encoded_text = torch.tensor(
|
||||
[encode(message, string_to_int)], dtype=torch.long
|
||||
).to(device)
|
||||
print(f"Encoded text shape: {encoded_text.shape}") # Debug print
|
||||
if encoded_text.size(1) == 0:
|
||||
return "Message could not be processed."
|
||||
|
||||
response = model.generate(encoded_text, max_new_tokens=50)
|
||||
decoded_response = decode(response[0].tolist(), int_to_string)
|
||||
return decoded_response
|
||||
|
||||
|
||||
# train_model()
|
BIN
phoebe_model.pt
BIN
phoebe_model.pt
Binary file not shown.
Reference in New Issue
Block a user