Files
Pheobe/phoebe/train_gpt_model.py
Dan 75f1116b3b Fix: Moved the Files around due to imports not working right
Feat: Phoebe replies but it's gibbish
This is a version break because of the file structure change.
2024-05-15 20:13:35 -04:00

131 lines
3.7 KiB
Python

import torch
import mmap
import random
from gpt_model import GPT, encode, decode
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
batch_size = 64
block_size = 256
max_iters = 500
learning_rate = 2e-5
eval_iters = 250
dropout = 0.2
chars = ""
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
# Ensure that space and other special characters are included
# Ensure that space and other special characters are included
required_chars = " \n\r\t"
for char in required_chars:
if char not in chars:
chars.append(char)
# Add a special token for unknown characters
special_token = "<unk>"
if special_token not in chars:
chars.append(special_token)
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
def get_random_chunk(split):
filename = "train_split.txt" if split == "train" else "eval_split.txt"
with open(filename, "rb") as f:
with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm:
file_size = len(mm)
start = random.randint(0, file_size - block_size * batch_size)
mm.seek(start)
block = mm.read(block_size * batch_size - 1)
decoded_block = block.decode("utf-8", errors="ignore").replace(
"\r", ""
)
data = torch.tensor(
encode(decoded_block, string_to_int), dtype=torch.long
)
return data
def get_batch(split):
data = get_random_chunk(split)
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
model = GPT(vocab_size).to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean().item()
model.train()
return out
def train_model():
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}"
)
xb, yb = get_batch("train")
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(loss.item())
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")
def check_input_chars(s, string_to_int):
unknown_chars = [c for c in s if c not in string_to_int]
if unknown_chars:
print(f"Unknown characters in input: {unknown_chars}")
return unknown_chars
def process_message(message):
if not message.strip():
return "Message is empty or invalid."
# Check for unknown characters
unknown_chars = check_input_chars(message, string_to_int)
if unknown_chars:
return f"Message contains unknown characters: {unknown_chars}"
encoded_text = torch.tensor(
[encode(message, string_to_int)], dtype=torch.long
).to(device)
print(f"Encoded text shape: {encoded_text.shape}") # Debug print
if encoded_text.size(1) == 0:
return "Message could not be processed."
response = model.generate(encoded_text, max_new_tokens=50)
decoded_response = decode(response[0].tolist(), int_to_string)
return decoded_response
# train_model()