Added the basics of her code, updated to not include any extra files
This commit is contained in:
109
talk_to_vivi.py
Normal file
109
talk_to_vivi.py
Normal file
@ -0,0 +1,109 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import json
|
||||
|
||||
# Define model
|
||||
class VivianTransformer(nn.Module):
|
||||
def __init__(self, vocab_size, d_model=128, n_layers=2, n_heads=4, d_ff=512):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(vocab_size, d_model)
|
||||
self.pos_encoding = nn.Parameter(torch.randn(1, 512, d_model))
|
||||
encoder_layer = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout=0.1)
|
||||
self.transformer = nn.TransformerEncoder(encoder_layer, n_layers)
|
||||
self.fc_out = nn.Linear(d_model, vocab_size)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
|
||||
x = self.transformer(x)
|
||||
return self.fc_out(x)
|
||||
|
||||
# Check device
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(f"Using device: {device}")
|
||||
if device.type == 'cuda':
|
||||
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
||||
else:
|
||||
print("Warning: CUDA not available. Running on CPU will be slower.")
|
||||
|
||||
# Load vocab
|
||||
try:
|
||||
with open('vocab.json', 'r') as f:
|
||||
vocab = json.load(f)
|
||||
except FileNotFoundError:
|
||||
print("Error: vocab.json not found. Run build_tokenizer.py first.")
|
||||
exit(1)
|
||||
|
||||
# Load model
|
||||
try:
|
||||
model = VivianTransformer(len(vocab)).to(device)
|
||||
model.load_state_dict(torch.load('vivi_finetuned.pt', map_location=device))
|
||||
except FileNotFoundError:
|
||||
print("Error: vivi_finetuned.pt not found. Trying vivi_base.pt...")
|
||||
try:
|
||||
model.load_state_dict(torch.load('vivi_base.pt', map_location=device))
|
||||
except FileNotFoundError:
|
||||
print("Error: vivi_base.pt not found. Run train_vivi.py first.")
|
||||
exit(1)
|
||||
except Exception as e:
|
||||
print(f"Error loading model: {e}")
|
||||
exit(1)
|
||||
model.eval()
|
||||
|
||||
# Reverse vocab for decoding
|
||||
id2word = {idx: word for word, idx in vocab.items()}
|
||||
|
||||
# Context memory
|
||||
context_memory = []
|
||||
memory_size = 5
|
||||
|
||||
def generate_response(prompt, max_len=32, p=0.9):
|
||||
global context_memory
|
||||
context_memory.append(prompt)
|
||||
if len(context_memory) > memory_size:
|
||||
context_memory = context_memory[-memory_size:]
|
||||
input_text = ' '.join(context_memory).lower()
|
||||
input_ids = [vocab['<s>']] + [vocab.get(word, vocab['<unk>']) for word in input_text.split()]
|
||||
input_tensor = torch.tensor([input_ids], device=device)
|
||||
|
||||
with torch.no_grad():
|
||||
for _ in range(max_len - len(input_ids)):
|
||||
output = model(input_tensor)
|
||||
logits = output[:, -1, :]
|
||||
probs = torch.softmax(logits, dim=-1)
|
||||
probs, indices = probs.sort(descending=True)
|
||||
cum_probs = torch.cumsum(probs, dim=-1)
|
||||
mask = cum_probs <= p
|
||||
if not mask.any():
|
||||
mask[0] = True
|
||||
probs = probs[mask]
|
||||
indices = indices[mask]
|
||||
next_word_id = torch.multinomial(probs, 1).item() # Get scalar index
|
||||
next_word_tensor = torch.tensor([[indices[next_word_id]]], device=device)
|
||||
input_tensor = torch.cat([input_tensor, next_word_tensor], dim=1)
|
||||
if indices[next_word_id].item() == vocab['</s>']:
|
||||
break
|
||||
|
||||
response_ids = input_tensor[0, len(input_ids):].tolist()
|
||||
response = ' '.join(id2word.get(idx, '<unk>') for idx in response_ids if idx != vocab['<pad>'])
|
||||
context_memory.append(response)
|
||||
return response
|
||||
|
||||
# Save conversations
|
||||
conversations = []
|
||||
try:
|
||||
with open('vivi_conversations.json', 'r') as f:
|
||||
conversations = json.load(f)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
# Interactive loop
|
||||
print("Chat with Vivi! Type 'exit' or 'quit' to stop.")
|
||||
while True:
|
||||
user_input = input("You: ")
|
||||
if user_input.lower() in ['exit', 'quit']:
|
||||
break
|
||||
response = generate_response(user_input)
|
||||
print(f"Vivi: {response}")
|
||||
conversations.append({"user": user_input, "vivi": response})
|
||||
with open('vivi_conversations.json', 'w') as f:
|
||||
json.dump(conversations, f, indent=2)
|
Reference in New Issue
Block a user