Added the basics of her code, updated to not include any extra files

This commit is contained in:
2025-06-10 10:56:56 -04:00
parent 6d18d21f2a
commit 3d0e5410f1
7 changed files with 364 additions and 0 deletions

5
.gitignore vendored
View File

@ -193,3 +193,8 @@ cython_debug/
# refer to https://docs.cursor.com/context/ignore-files
.cursorignore
.cursorindexingignore
*.txt
/texts
*.json
*.pt

21
build_tokenizer.py Normal file
View File

@ -0,0 +1,21 @@
from collections import Counter
import json
# Read corpus
with open('corpus.txt', 'r', encoding='utf-8') as f:
text = f.read().lower() # Normalize to lowercase
words = text.split()
# Build vocabulary
vocab_size = 10000
word_counts = Counter(words).most_common(vocab_size - 4) # Reserve 4 for special tokens
vocab = {word: idx for idx, (word, _) in enumerate(word_counts)}
vocab['<unk>'] = len(vocab)
vocab['<pad>'] = len(vocab)
vocab['<s>'] = len(vocab)
vocab['</s>'] = len(vocab)
# Save vocab
with open('vocab.json', 'w') as f:
json.dump(vocab, f)
print(f"Vocabulary of size {len(vocab)} saved to vocab.json")

36
download_corpus.py Normal file
View File

@ -0,0 +1,36 @@
import gutenbergpy.textget
import re
import glob
# Download books by Gutenberg ID
def download_gutenberg_book(book_id, output_file):
try:
raw_text = gutenbergpy.textget.get_text_by_id(book_id)
# Remove headers/footers
text = re.sub(r'\*\*\*.*?\*\*\*', '', raw_text.decode('utf-8'), flags=re.DOTALL)
text = re.sub(r'\n+', '\n', text).strip()
with open(output_file, 'w', encoding='utf-8') as f:
f.write(text)
except Exception as e:
print(f"Error downloading book {book_id}: {e}")
# Download selected books
books = [
(1342, 'pride_and_prejudice.txt'),
(45, 'anne_of_green_gables.txt'),
(74, 'tom_sawyer.txt')
]
for book_id, filename in books:
print(f"Downloading book ID {book_id}...")
download_gutenberg_book(book_id, filename)
# Combine into corpus
corpus = ''
for file in glob.glob('*.txt'):
with open(file, 'r', encoding='utf-8') as f:
corpus += f.read() + '\n'
with open('corpus.txt', 'w', encoding='utf-8') as f:
f.write(corpus)
print("Corpus created at corpus.txt")

68
finetune_vivi.py Normal file
View File

@ -0,0 +1,68 @@
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import json
# Define model (same as before)
class VivianTransformer(nn.Module):
def __init__(self, vocab_size, d_model=128, n_layers=2, n_heads=4, d_ff=512):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = nn.Parameter(torch.randn(1, 512, d_model))
encoder_layer = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout=0.1)
self.transformer = nn.TransformerEncoder(encoder_layer, n_layers)
self.fc_out = nn.Linear(d_model, vocab_size)
def forward(self, x):
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
x = self.transformer(x)
return self.fc_out(x)
# Conversation dataset
class ViviDataset(Dataset):
def __init__(self, json_file, vocab, max_len=32):
with open(json_file, 'r') as f:
self.data = json.load(f)
self.vocab = vocab
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
user = self.data[idx]['user'].lower().split()
vivi = self.data[idx]['vivi'].lower().split()
seq = [self.vocab['<s>']] + [self.vocab.get(word, self.vocab['<unk>']) for word in user + vivi] + [self.vocab['</s>']]
seq = seq[:self.max_len] + [self.vocab['<pad>']] * (self.max_len - len(seq))
return torch.tensor(seq[:-1]), torch.tensor(seq[1:])
# Load vocab and data
with open('vocab.json', 'r') as f:
vocab = json.load(f)
dataset = ViviDataset('vivi_conversations.json', vocab)
dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
# Load model
model = VivianTransformer(len(vocab)).cuda()
model.load_state_dict(torch.load('vivi_base.pt'))
optimizer = optim.Adam(model.parameters(), lr=0.00005) # Lower LR for fine-tuning
criterion = nn.CrossEntropyLoss(ignore_index=vocab['<pad>'])
# Fine-tune
for epoch in range(10):
model.train()
total_loss = 0
for src, tgt in dataloader:
src, tgt = src.cuda(), tgt.cuda()
optimizer.zero_grad()
output = model(src)
loss = criterion(output.view(-1, len(vocab)), tgt.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f'Fine-tune Epoch {epoch+1}, Loss: {total_loss / len(dataloader):.4f}')
# Save model
torch.save(model.state_dict(), 'vivi_finetuned.pt')
print("Fine-tuned model saved to vivi_finetuned.pt")

31
prepare_dataset.py Normal file
View File

@ -0,0 +1,31 @@
import torch
from torch.utils.data import Dataset
import json
class TextDataset(Dataset):
def __init__(self, corpus_file, vocab, max_len=32):
self.vocab = vocab
self.max_len = max_len
with open(corpus_file, 'r', encoding='utf-8') as f:
text = f.read().lower().split()
self.tokens = [self.vocab.get(word, self.vocab['<unk>']) for word in text]
def __len__(self):
return len(self.tokens) // self.max_len
def __getitem__(self, idx):
start = idx * self.max_len
seq = self.tokens[start:start + self.max_len]
if len(seq) < self.max_len:
seq += [self.vocab['<pad>']] * (self.max_len - len(seq))
return torch.tensor(seq[:-1]), torch.tensor(seq[1:])
# Load vocab
with open('vocab.json', 'r') as f:
vocab = json.load(f)
# Create dataset
dataset = TextDataset('corpus.txt', vocab)
torch.save(dataset, 'dataset.pt')
print("Dataset saved to dataset.pt")

109
talk_to_vivi.py Normal file
View File

@ -0,0 +1,109 @@
import torch
import torch.nn as nn
import json
# Define model
class VivianTransformer(nn.Module):
def __init__(self, vocab_size, d_model=128, n_layers=2, n_heads=4, d_ff=512):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = nn.Parameter(torch.randn(1, 512, d_model))
encoder_layer = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout=0.1)
self.transformer = nn.TransformerEncoder(encoder_layer, n_layers)
self.fc_out = nn.Linear(d_model, vocab_size)
def forward(self, x):
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
x = self.transformer(x)
return self.fc_out(x)
# Check device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
if device.type == 'cuda':
print(f"GPU: {torch.cuda.get_device_name(0)}")
else:
print("Warning: CUDA not available. Running on CPU will be slower.")
# Load vocab
try:
with open('vocab.json', 'r') as f:
vocab = json.load(f)
except FileNotFoundError:
print("Error: vocab.json not found. Run build_tokenizer.py first.")
exit(1)
# Load model
try:
model = VivianTransformer(len(vocab)).to(device)
model.load_state_dict(torch.load('vivi_finetuned.pt', map_location=device))
except FileNotFoundError:
print("Error: vivi_finetuned.pt not found. Trying vivi_base.pt...")
try:
model.load_state_dict(torch.load('vivi_base.pt', map_location=device))
except FileNotFoundError:
print("Error: vivi_base.pt not found. Run train_vivi.py first.")
exit(1)
except Exception as e:
print(f"Error loading model: {e}")
exit(1)
model.eval()
# Reverse vocab for decoding
id2word = {idx: word for word, idx in vocab.items()}
# Context memory
context_memory = []
memory_size = 5
def generate_response(prompt, max_len=32, p=0.9):
global context_memory
context_memory.append(prompt)
if len(context_memory) > memory_size:
context_memory = context_memory[-memory_size:]
input_text = ' '.join(context_memory).lower()
input_ids = [vocab['<s>']] + [vocab.get(word, vocab['<unk>']) for word in input_text.split()]
input_tensor = torch.tensor([input_ids], device=device)
with torch.no_grad():
for _ in range(max_len - len(input_ids)):
output = model(input_tensor)
logits = output[:, -1, :]
probs = torch.softmax(logits, dim=-1)
probs, indices = probs.sort(descending=True)
cum_probs = torch.cumsum(probs, dim=-1)
mask = cum_probs <= p
if not mask.any():
mask[0] = True
probs = probs[mask]
indices = indices[mask]
next_word_id = torch.multinomial(probs, 1).item() # Get scalar index
next_word_tensor = torch.tensor([[indices[next_word_id]]], device=device)
input_tensor = torch.cat([input_tensor, next_word_tensor], dim=1)
if indices[next_word_id].item() == vocab['</s>']:
break
response_ids = input_tensor[0, len(input_ids):].tolist()
response = ' '.join(id2word.get(idx, '<unk>') for idx in response_ids if idx != vocab['<pad>'])
context_memory.append(response)
return response
# Save conversations
conversations = []
try:
with open('vivi_conversations.json', 'r') as f:
conversations = json.load(f)
except FileNotFoundError:
pass
# Interactive loop
print("Chat with Vivi! Type 'exit' or 'quit' to stop.")
while True:
user_input = input("You: ")
if user_input.lower() in ['exit', 'quit']:
break
response = generate_response(user_input)
print(f"Vivi: {response}")
conversations.append({"user": user_input, "vivi": response})
with open('vivi_conversations.json', 'w') as f:
json.dump(conversations, f, indent=2)

94
train_vivi.py Normal file
View File

@ -0,0 +1,94 @@
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import json
# Define TextDataset
class TextDataset(Dataset):
def __init__(self, corpus_file, vocab, max_len=32):
self.vocab = vocab
self.max_len = max_len
with open(corpus_file, 'r', encoding='utf-8') as f:
text = f.read().lower().split()
self.tokens = [self.vocab.get(word, self.vocab['<unk>']) for word in text]
def __len__(self):
return len(self.tokens) // self.max_len
def __getitem__(self, idx):
start = idx * self.max_len
seq = self.tokens[start:start + self.max_len]
if len(seq) < self.max_len:
seq += [self.vocab['<pad>']] * (self.max_len - len(seq))
return torch.tensor(seq[:-1]), torch.tensor(seq[1:])
# Define model
class VivianTransformer(nn.Module):
def __init__(self, vocab_size, d_model=128, n_layers=2, n_heads=4, d_ff=512):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = nn.Parameter(torch.randn(1, 512, d_model))
encoder_layer = nn.TransformerEncoderLayer(d_model, n_heads, d_ff, dropout=0.1)
self.transformer = nn.TransformerEncoder(encoder_layer, n_layers)
self.fc_out = nn.Linear(d_model, vocab_size)
def forward(self, x):
x = self.embedding(x) + self.pos_encoding[:, :x.size(1), :]
x = self.transformer(x)
return self.fc_out(x)
# Check device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
if device.type == 'cuda':
print(f"GPU: {torch.cuda.get_device_name(0)}")
else:
print("Warning: CUDA not available. Training on CPU will be slower.")
# Load vocab
try:
with open('vocab.json', 'r') as f:
vocab = json.load(f)
except FileNotFoundError:
print("Error: vocab.json not found. Run build_tokenizer.py first.")
exit(1)
# Load dataset
try:
dataset = torch.load('dataset.pt')
except FileNotFoundError:
print("Error: dataset.pt not found. Run prepare_dataset.py first.")
exit(1)
except Exception as e:
print(f"Error loading dataset.pt: {e}")
exit(1)
# Create dataloader
dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
# Initialize model
model = VivianTransformer(len(vocab)).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.CrossEntropyLoss(ignore_index=vocab['<pad>'])
# Train
print("Starting training...")
for epoch in range(5):
model.train()
total_loss = 0
for batch_idx, (src, tgt) in enumerate(dataloader):
src, tgt = src.to(device), tgt.to(device)
optimizer.zero_grad()
output = model(src)
loss = criterion(output.view(-1, len(vocab)), tgt.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item()
if batch_idx % 100 == 0:
print(f"Epoch {epoch+1}, Batch {batch_idx}, Loss: {loss.item():.4f}")
print(f'Epoch {epoch+1}, Average Loss: {total_loss / len(dataloader):.4f}')
# Save model
torch.save(model.state_dict(), 'vivi_base.pt')
print("Model saved to vivi_base.pt")