Compare commits

...

10 Commits

Author SHA1 Message Date
Dan
e3e4b7abe6 Fix: Added code to allow for other data sources to be added 2024-06-08 09:21:19 -04:00
Dan
1fe54ed1ff Fix: Adjusting Phoebe's code to prevent 'parroting' 2024-05-25 08:30:55 -04:00
Dan
509670c989 feat: Managed to achieve a loss of 0.285 2024-05-23 22:39:46 -04:00
Dan
47c8cce3dd Fix: Working on improving the model code to get a better learning rate than 2.5 2024-05-17 23:33:02 -04:00
Dan
763514e815 Feat: Added a clean_data to process the data better
Feat: Added the new cleaned datasets
2024-05-17 14:15:44 -04:00
Dan
fb8db8a870 Fix: Working on the generate reply for discord.
Feat: Added a launch.json to allow quicker launches of the bot
docs: phoebe_model.pt will change every time we train.
2024-05-15 22:36:38 -04:00
Dan
75f1116b3b Fix: Moved the Files around due to imports not working right
Feat: Phoebe replies but it's gibbish
This is a version break because of the file structure change.
2024-05-15 20:13:35 -04:00
Dan
12071fbf61 Feat!: Added train_gpt_model.py
This breaks any past code as it splits the code into two files.
doc: added phoebe_model.pt (trained model for phoebe)
2024-05-15 15:07:02 -04:00
Dan
54c4cf59b0 chore: added openwebtext and data_extract.py to the .gitignore
docs: added dataset
2024-05-15 12:46:19 -04:00
Dan
adca64bfc8 feat: Added GPT Model Code
Fix: Changed .pre-commit-confit.yaml to stop conflicts
docs: README.md changed due to the pre-commits
2024-05-14 21:15:36 -04:00
15 changed files with 1424925 additions and 4 deletions

3
.gitignore vendored
View File

@@ -158,3 +158,6 @@ cython_debug/
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
/openwebtext
/data_extract.py
/runs/phoebe_training

View File

@@ -1,11 +1,19 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.4.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- repo: https://github.com/psf/black
rev: 24.4.2
rev: 22.3.0
hooks:
- id: black
language_version: python3.10.6
args: [--line-length=79]
- repo: https://github.com/pycqa/flake8
rev: 7.0.0 # Use the latest revision
rev: 4.0.1
hooks:
- id: flake8
args: [--max-line-length=79, --ignore=E203]

15
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,15 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [
{
"name": "Phoebe",
"type": "debugpy",
"request": "launch",
"program": "E:\\Development\\AI Development\\Phoebe\\phoebe\\discord_bot.py",
"console": "integratedTerminal"
}
]
}

View File

@@ -2,4 +2,4 @@
![Phoebe](/Phoebe.png)
# About Me
Hi there! My name is Phoebe! I am a 20 year old college student who is currently working on my degree in Machine Learning. I am a bit of a shy gal, and like to obverse everyone from the distance. My best friend is Daniel (@advtech as he goes by on Discord). I am looking forward to getting to know you!
Hi there! My name is Phoebe! I am a 20 year old college student who is currently working on my degree in Machine Learning. I am a bit of a shy gal, and like to obverse everyone from the distance. My best friend is Daniel (@advtech as he goes by on Discord). I am looking forward to getting to know you!

48
clean_data.py Normal file
View File

@@ -0,0 +1,48 @@
import re
def clean_data(data):
# Split data into lines and filter out metadata
lines = data.splitlines()
clean_lines = []
# Regex patterns to identify metadata
metadata_patterns = [
r"^[0-9a-f]{8}-[0-9a-f]{32}\.txt", # Pattern to identify metadata
# lines with .txt file names
r"^[0-9]+$", # Pattern to identify lines with only numbers
r"^[0-9]{7,8}.*$", # Pattern to identify lines
# starting with 7 or 8 digit numbers
r"^[^a-zA-Z]*$", # Pattern to identify lines
# without alphabetic characters
r"^.*ustar.*$", # Pattern to identify lines containing 'ustar'
]
for line in lines:
if any(re.match(pattern, line) for pattern in metadata_patterns):
continue
clean_lines.append(line)
return "\n".join(clean_lines)
# Load and clean training data
with open("train_split.txt", "r", encoding="utf-8") as f:
train_data = f.read()
train_data_cleaned = clean_data(train_data)
# Load and clean validation data
with open("eval_split.txt", "r", encoding="utf-8") as f:
val_data = f.read()
val_data_cleaned = clean_data(val_data)
# Save cleaned data for inspection (optional)
with open("train_split_cleaned.txt", "w", encoding="utf-8") as f:
f.write(train_data_cleaned)
with open("eval_split_cleaned.txt", "w", encoding="utf-8") as f:
f.write(val_data_cleaned)
# Print sample cleaned data
print("Sample cleaned training data:", train_data_cleaned[:1000])
print("Sample cleaned validation data:", val_data_cleaned[:1000])

114
combine_and_clean.py Normal file
View File

@@ -0,0 +1,114 @@
# combine_and_clean.py
import os
import re
import random
from tqdm import tqdm
import concurrent.futures
import multiprocessing
def clean_data(data):
lines = data.splitlines()
clean_lines = []
metadata_patterns = [
r"^[0-9a-f]{8}-[0-9a-f]{32}\.txt",
r"^[0-9]+$",
r"^[0-9]{7,8}.*$",
r"^[^a-zA-Z]*$",
r"^.*ustar.*$",
]
for line in lines:
if any(re.match(pattern, line) for pattern in metadata_patterns):
continue
clean_lines.append(line)
return "\n".join(clean_lines)
def process_file(args):
directory, filename, output_file = args
file_path = os.path.join(directory, filename)
with open(file_path, "rt", encoding="utf-8") as infile:
text = infile.read()
with open(output_file, "a", encoding="utf-8") as outfile:
outfile.write(text)
characters = set(text)
return characters
def files_in_dir(directory):
return [
filename
for filename in os.listdir(directory)
if os.path.isfile(os.path.join(directory, filename))
]
def process_files_in_parallel(files, folder_path, output_file):
vocab = set()
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
args = [(folder_path, filename, output_file) for filename in files]
for characters in tqdm(
executor.map(process_file, args), total=len(files)
):
vocab.update(characters)
return vocab
def main():
multiprocessing.freeze_support()
dataset_dirs = ["datasets/openwebtext", "datasets/other_dataset"]
output_file_train = "combined_train.txt"
output_file_val = "combined_eval.txt"
vocab_file = "vocab.txt"
all_files = []
for dir in dataset_dirs:
all_files.extend([(dir, filename) for filename in files_in_dir(dir)])
total_files = len(all_files)
split_index = int(total_files * 0.9)
files_train = all_files[:split_index]
files_val = all_files[split_index:]
sample_rate = 0.01
files_train_sampled = random.sample(
files_train, max(1, int(len(files_train) * sample_rate))
)
files_val_sampled = random.sample(
files_val, max(1, int(len(files_val) * sample_rate))
)
open(output_file_train, "w").close()
open(output_file_val, "w").close()
vocab_train = process_files_in_parallel(
files_train_sampled, dataset_dirs[0], output_file_train
)
vocab_val = process_files_in_parallel(
files_val_sampled, dataset_dirs[0], output_file_val
)
vocab = vocab_train.union(vocab_val)
with open(vocab_file, "w", encoding="utf-8") as vfile:
for char in sorted(vocab):
vfile.write(char + "\n")
with open(output_file_train, "r", encoding="utf-8") as f:
train_data = f.read()
train_data_cleaned = clean_data(train_data)
with open("combined_train_cleaned.txt", "w", encoding="utf-8") as f:
f.write(train_data_cleaned)
with open(output_file_val, "r", encoding="utf-8") as f:
val_data = f.read()
val_data_cleaned = clean_data(val_data)
with open("combined_eval_cleaned.txt", "w", encoding="utf-8") as f:
f.write(val_data_cleaned)
if __name__ == "__main__":
main()

BIN
eval_split.txt Normal file

Binary file not shown.

141562
eval_split_cleaned.txt Normal file

File diff suppressed because one or more lines are too long

64
phoebe/discord_bot.py Normal file
View File

@@ -0,0 +1,64 @@
import os
import discord
import torch
from dotenv import load_dotenv
from train_gpt_model import process_message
from gpt_model import load_model
# Load environment variables from .env file
load_dotenv()
# Get the Discord bot token from environment variables
TOKEN = os.getenv("DISCORD_TOKEN")
# Load the vocabulary
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
# Ensure that space and other special characters are included
required_chars = " \n\r\t"
for char in required_chars:
if char not in chars:
chars.append(char)
# Add a special token for unknown characters
special_token = "<unk>"
if special_token not in chars:
chars.append(special_token)
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
# Initialize and load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = load_model(vocab_size, "phoebe_model.pt").to(device)
# Initialize Discord client
intents = discord.Intents.default()
intents.message_content = True
client = discord.Client(intents=intents)
@client.event
async def on_ready():
print(f"We have logged in as {client.user}")
@client.event
async def on_message(message):
if message.author == client.user:
return
# Debug: print the message content
print(f"Received message: '{message.content}'")
# Process the message and get a response
response = process_message(message.content)
# Send the response back to the Discord channel
await message.channel.send(response)
client.run(TOKEN)

148
phoebe/gpt_model.py Normal file
View File

@@ -0,0 +1,148 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
# Hyperparameters
block_size = 256
num_embed = 512 # Increased embedding size
num_heads = 8
num_layers = 12 # Increased number of layers
dropout = 0.3
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(num_embed, head_size)
self.query = nn.Linear(num_embed, head_size)
self.value = nn.Linear(num_embed, head_size)
self.register_buffer(
"tril", torch.tril(torch.ones(block_size, block_size))
)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(num_embed, num_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self, num_embed):
super().__init__()
self.net = nn.Sequential(
nn.Linear(num_embed, 4 * num_embed),
nn.ReLU(),
nn.Linear(4 * num_embed, num_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, num_embed, num_head):
super().__init__()
head_size = num_embed // num_head
self.sa = MultiHeadAttention(num_head, head_size)
self.ff = FeedForward(num_embed)
self.ln1 = nn.LayerNorm(num_embed)
self.ln2 = nn.LayerNorm(num_embed)
def forward(self, x):
y = self.sa(x)
x = self.ln1(x + y)
y = self.ff(x)
x = self.ln2(x + y)
return x
class GPT(nn.Module):
def __init__(self, vocab_size):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size, num_embed)
self.position_embedding_table = nn.Embedding(block_size, num_embed)
self.blocks = nn.Sequential(
*[Block(num_embed, num_heads) for _ in range(num_layers)]
)
self.ln = nn.LayerNorm(num_embed)
self.lm_head = nn.Linear(num_embed, vocab_size)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(
torch.arange(T, device=idx.device)
)
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln(x)
logits = self.lm_head(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens, temperature):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
def encode(s, string_to_int):
return [string_to_int.get(c, string_to_int["<unk>"]) for c in s]
def decode(lst, int_to_string):
return "".join([int_to_string[i] for i in lst])
def load_model(vocab_size, model_path=None):
model = GPT(vocab_size)
if model_path:
try:
model.load_state_dict(torch.load(model_path))
print("Model loaded successfully.")
except FileNotFoundError:
print("No pre-trained model found. Initialized a new model.")
return model

229
phoebe/train_gpt_model.py Normal file
View File

@@ -0,0 +1,229 @@
# flake8: noqa: E203
import os
import random
import re
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from gpt_model import encode, decode, load_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Hyperparameters
batch_size = 32 # Reduced batch size for gradient accumulation
accumulation_steps = 4 # Gradient accumulation steps
block_size = 256
max_iters = 100000 # Increased iterations
learning_rate = 3e-5 # Adjust learning rate
eval_iters = 100
dropout = 0.4 # Increased dropout to prevent overfitting
patience = 20000 # Increased patience for early stopping
weight_decay = 0.01 # Add weight decay for regularization
# Load the vocabulary and encoded data
with open("vocab.txt", "r", encoding="utf-8") as f:
text = f.read()
chars = sorted(list(set(text)))
required_chars = " \n\r\t"
for char in required_chars:
if char not in chars:
chars.append(char)
special_token = "<unk>"
if special_token not in chars:
chars.append(special_token)
vocab_size = len(chars)
string_to_int = {ch: i for i, ch in enumerate(chars)}
int_to_string = {i: ch for i, ch in enumerate(chars)}
def clean_text(text):
text = re.sub(r"[^a-zA-Z0-9\s.,;!?\'\"]+", "", text)
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def load_and_clean_data(file_path):
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
cleaned_text = clean_text(text)
return cleaned_text
train_data = load_and_clean_data("train_split_cleaned.txt")
val_data = load_and_clean_data("eval_split_cleaned.txt")
train_data = torch.tensor(encode(train_data, string_to_int), dtype=torch.long)
val_data = torch.tensor(encode(val_data, string_to_int), dtype=torch.long)
def get_random_chunk(data, chunk_size):
start = random.randint(0, len(data) - chunk_size - 1)
chunk = data[start : start + chunk_size]
return chunk
def get_batch(data, block_size, batch_size):
chunk_size = block_size * (batch_size + 1)
chunk = get_random_chunk(data, chunk_size)
x = chunk[: block_size * batch_size].view(batch_size, block_size)
y = chunk[1 : block_size * batch_size + 1].view(batch_size, block_size)
x, y = x.to(device), y.to(device)
return x, y
def load_or_initialize_model(vocab_size):
model = load_model(vocab_size)
if os.path.exists("phoebe_model.pt"):
model.load_state_dict(torch.load("phoebe_model.pt"))
print("Model loaded from phoebe_model.pt")
else:
print("Initialized a new model")
return model
model = load_or_initialize_model(vocab_size).to(device)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
data = train_data if split == "train" else val_data
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x, y = get_batch(data, block_size, batch_size)
logits, loss = model(x, y)
losses[k] = loss.item()
out[split] = losses.mean().item()
model.train()
return out
def train_model():
optimizer = optim.AdamW(
model.parameters(), lr=learning_rate, weight_decay=weight_decay
)
steps_per_epoch = len(train_data) // (batch_size * block_size)
epochs = max_iters // steps_per_epoch
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=learning_rate * 10,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
)
writer = SummaryWriter(log_dir="runs/phoebe_training")
best_val_loss = float("inf")
patience_counter = 0
for iter in range(max_iters):
if iter % eval_iters == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.3f}, "
f"val loss {losses['val']:.3f}"
)
writer.add_scalar("Loss/train", losses["train"], iter)
writer.add_scalar("Loss/val", losses["val"], iter)
if losses["val"] < best_val_loss:
best_val_loss = losses["val"]
patience_counter = 0
torch.save(model.state_dict(), "phoebe_model.pt")
print("Model Saved!")
else:
patience_counter += eval_iters
if patience_counter >= patience:
print("Early stopping triggered.")
break
xb, yb = get_batch(train_data, block_size, batch_size)
logits, loss = model(xb, yb)
loss = loss / accumulation_steps
loss.backward()
if (iter + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
if patience_counter < patience:
print("Training completed without early stopping.")
print(f"Final loss: {loss.item()}")
writer.close()
def check_input_chars(s, string_to_int):
unknown_chars = [c for c in s if c not in string_to_int]
if unknown_chars:
print(f"Unknown characters in input: {unknown_chars}")
return unknown_chars
# Maintain conversation history
conversation_history = []
def process_message(message):
global conversation_history
print(f"Processing message: '{message}'")
if not message.strip():
print("Message is empty or invalid.")
return "Message is empty or invalid."
unknown_chars = check_input_chars(message, string_to_int)
if unknown_chars:
print(f"Message contains unknown characters: {unknown_chars}")
return f"Message contains unknown characters: {unknown_chars}"
# Add the new message to the conversation history
conversation_history.append(message)
# Limit the conversation history to the last 5 messages to avoid excessive length
if len(conversation_history) > 5:
conversation_history = conversation_history[-5:]
# Concatenate the conversation history to form the input prompt
context = " ".join(conversation_history)
encoded_text = torch.tensor(
[encode(context, string_to_int)], dtype=torch.long
).to(device)
print(f"Encoded text shape: {encoded_text.shape}")
if encoded_text.size(1) == 0:
print("Message could not be processed.")
return "Message could not be processed."
with torch.no_grad():
generated_tokens = model.generate(
encoded_text, max_new_tokens=100, temperature=1.0
)
generated_tokens = generated_tokens[0, len(encoded_text[0]) :]
decoded_response = decode(generated_tokens.tolist(), int_to_string)
print(f"Generated response: '{decoded_response}'")
if decoded_response.startswith(context):
decoded_response = decoded_response[len(context) :].strip()
print(f"Final response: '{decoded_response}'")
# Add the response to the conversation history
conversation_history.append(decoded_response)
return decoded_response
if __name__ == "__main__":
train_model()

BIN
phoebe_model.pt Normal file

Binary file not shown.

BIN
train_split.txt Normal file

Binary file not shown.

1282730
train_split_cleaned.txt Normal file

File diff suppressed because one or more lines are too long

BIN
vocab.txt Normal file

Binary file not shown.